2-Stroke Marine Diesel Engine
Oct 06, 2025



2- STROKE MARINE DIESEL ENGINE

A 2-stroke marine diesel engine is a type of internal combustion engine that completes all four stages of operation intake, compression, combustion, and exhaust in two piston strokes (one crankshaft revolution). It is primarily used in large ships such as tankers, container vessels, and bulk carriers because of its high power output, fuel efficiency, and ability to run continuously for long periods. The engine is designed to deliver maximum torque at low revolutions per minute (RPM), making it ideal for direct propulsion of heavy marine vessels.


Purpose

The main purpose of a 2-stroke marine diesel engine is to generate continuous propulsion power for ships during long-distance voyages. It provides high torque and efficiency at low speed, enabling vessels to move massive loads across oceans while minimizing fuel consumption. Its robust design, long service life, and ability to operate on different fuel types from heavy fuel oil (HFO) to marine diesel oil (MDO) make it the backbone of commercial marine propulsion.


Background and History

The concept of the 2-stroke engine emerged in the late 19th century, pioneered by Dugald Clerk (1878) and Joseph Day (1891). In the early 20th century, diesel technology replaced steam propulsion as shipping demanded greater efficiency. By the 1930s, manufacturers like Sulzer, MAN B&W, and Mitsubishi developed large-scale crosshead-type 2-stroke engines, setting the standard for ocean-going ships. Since the 1960s, these engines have dominated maritime transport, evolving to meet stricter emission and fuel efficiency standards.



Main Components and Functions

Cylinder Liner : Forms the combustion chamber’s wall and withstands high pressure and temperature.
Piston & Rings : Convert combustion energy to motion and maintain sealing between piston and liner.
Connecting Rod & Crankshaft : Transfer and convert linear motion into rotary motion for propulsion.
Crosshead Bearing : Separates the piston and connecting rod to prevent side forces.
Scavenge Air System : Supplies fresh air for combustion and removes exhaust gases.
Turbocharger : Utilizes exhaust gas energy to compress intake air for better combustion.
Fuel Injector : Sprays atomized fuel into the combustion chamber for ignition.
Exhaust Valve : Opens to release burnt gases.
Cooling and Lubrication Systems : Control temperature and minimize wear.

ADVERTISMENT

Working Principle
The 2-stroke cycle has two main strokes:

Downward Stroke (Power and Exhaust): Fuel combusts, driving the piston downward. Exhaust gases exit as fresh air enters through scavenge ports.

Upward Stroke (Compression): The piston rises, compressing the air. Fuel is injected near the top dead center, igniting immediately to start a new cycle.
This means the engine produces one power stroke per revolution, providing greater power density than 4-stroke engines.


Advantages

•High power output at low RPM
•Excellent fuel efficiency for long voyages
•Strong, reliable, and durable design
•Simple direct coupling to the propeller shaft


Disadvantages

•Large and heavy machinery
•Complex scavenging system
•Higher vibration and noise levels
•Requires skilled maintenance and monitoring


Modern Developments

Modern 2-stroke engines feature electronic fuel injection, variable turbocharging, and automated control systems for enhanced efficiency. To meet IMO Tier III emission standards, technologies like Exhaust Gas Recirculation (EGR) and scrubbers are now widely used. Manufacturers such as MAN Energy Solutions and Wärtsilä are also developing dual-fuel engines that run on cleaner fuels like LNG, methanol, or ammonia, supporting global decarbonization goals.


Conclusion

The 2-stroke marine diesel engine remains the heart of global maritime propulsion, powering over 80% of the world’s commercial fleet. Its combination of efficiency, endurance, and adaptability ensures its continued importance as shipping transitions toward greener and more sustainable technologies.

RELATED EDUCATIONAL VIEW MORE...

IMMERSION SUIT: Essential Survival Gear for Every Seafarer

An immersion suit also called a survival suit is a life-saving garment designed to keep seafarers protected in the event of abandoning ship, especially in cold waters. Made of insulated, waterproof material, it drastically slows body heat loss and increases chances of rescue. Purpose • Thermal Protection: Retains body heat to prevent hypothermia. • Buoyancy: Keeps the wearer afloat without the need to swim. • Visibility: High-visibility color and reflective tape help rescuers locate survivors quickly. • Survivability: Protects against wind, waves, and freezing temperatures while awaiting rescue.

Understanding IMO Safety Symbols

The International Maritime Organization (IMO) safety symbols serve as universal visual guides designed to protect lives at sea. These standardized icons provide quick, clear, and language-independent instructions that help seafarers, passengers, and maritime professionals respond effectively in emergencies. Importance of Symbols on Board Onboard a vessel, safety depends not only on equipment but also on awareness. In critical situations where every second counts, IMO safety symbols minimize confusion by pointing directly to lifesaving appliances, emergency exits, fire control stations, and medical facilities. These symbols ensure that regardless of nationality or spoken language, crew and passengers can understand and act immediately. Categories of Safety Symbols The chart features a wide range of icons: • Lifesaving Equipment: Symbols for lifeboats, liferafts, rescue boats, lifejackets, immersion suits, and survival radios guide seafarers to crucial survival gear. • Emergency Actions: Icons such as eyewash, emergency stop buttons, stretchers, showers, and assembly points highlight essential emergency responses. • Evacuation Guidance: Running man symbols, arrows, escape ladders, and push-to-open signs direct safe movement during evacuation. • Communication & Fire Safety: Telephone stations, fire alarms, and firefighting systems are also clearly indicated

SECURITY LEVELS: ISPS CODE

The International Ship and Port Facility Security (ISPS) Code is a comprehensive set of measures adopted by the International Maritime Organization (IMO) under the Safety of Life at Sea (SOLAS) Convention. Established in response to heightened concerns about maritime terrorism and unlawful acts after the September 11, 2001 attacks, the ISPS Code entered into force on July 1, 2004. Its primary objective is to enhance the security of ships and port facilities by establishing a standardized, consistent framework that enables governments, shipping companies, port authorities, and other stakeholders to collaborate in identifying and addressing threats to maritime security. The ISPS Code is divided into two main parts. Part A is mandatory and lays down detailed requirements for governments, shipowners, and port facilities to follow. Part B contains recommended guidelines that provide flexibility in implementation but are not legally binding. Together, these parts form a comprehensive approach to maritime security, balancing strict compliance with adaptable measures tailored to specific risks and operational environments. Since its inception, the ISPS Code has been continuously updated to address evolving threats, including cyber risks, piracy, and organized crime affecting global trade routes. The Code applies to ships engaged in international voyages, including passenger ships, cargo ships of 500 gross tonnage and above, mobile offshore drilling units, and port facilities serving such ships. Each ship must have an approved Ship Security Plan (SSP) and designate a Ship Security Officer (SSO). Similarly, each port facility must maintain a Port Facility Security Plan (PFSP) and appoint a Port Facility Security Officer (PFSO). These officers are responsible for ensuring that security measures are implemented, drills and exercises are conducted, and compliance is maintained under the oversight of the Designated Authority from the flag or port state. A crucial feature of the ISPS Code is the establishment of three security levels, which provide a flexible and responsive framework to adapt to varying threat environments. Security Level 1 represents the normal condition, where minimum security measures must be maintained at all times. Security Level 2 is applied when there is an increased risk of a security incident, requiring additional protective measures. Security Level 3 represents the highest alert level, where a probable or imminent security threat exists, and extraordinary measures must be implemented to safeguard ships and port facilities. These security levels are set by the Contracting Governments and communicated to ships and port facilities. Ships are required to comply with the security level set by the administration of the port state they are visiting. This ensures that all parties are synchronized in their efforts, minimizing the likelihood of confusion or lapses during periods of heightened alert. The dynamic application of security levels demonstrates the adaptability of the ISPS Code to different threat scenarios, from routine operations to emergency conditions. Another critical element of the ISPS Code is the use of security assessments and plans. A Ship Security Assessment (SSA) identifies potential vulnerabilities, while the Ship Security Plan outlines the preventive, protective, and response measures to address them. Likewise, Port Facility Security Assessments (PFSA) and Plans detail site-specific risks and countermeasures. Both ships and port facilities undergo audits and verifications to ensure that these plans remain effective and updated, considering new threats such as cyberattacks targeting navigation and cargo systems. The ISPS Code also emphasizes international cooperation and information exchange. Contracting Governments are encouraged to share intelligence regarding potential threats, suspicious activities, and lessons learned from incidents. This collaborative approach enhances global maritime security, ensuring that vulnerabilities in one region do not compromise the safety of the wider international shipping community. The Code highlights that maritime security is not only a national concern but a shared global responsibility. Training and drills form an essential part of the Code’s framework. Crew members, ship officers, and port facility staff must undergo regular security training to familiarize themselves with procedures for access control, cargo inspections, restricted area monitoring, and emergency responses. Periodic drills test the readiness of personnel and the effectiveness of the security systems in place. These practices ensure that in times of real threats, the response is swift, coordinated, and efficient. Over time, the ISPS Code has expanded its scope to address emerging challenges. The increasing reliance on digital technologies in maritime operations has introduced new risks, particularly in the form of cyber threats. Recognizing this, the

WILLIAMSON TURN

The Williamson Turn is a maneuver used to reverse the course of a vessel and return along its original track. It is primarily applied during Man Overboard (MOB) situations, especially when the exact position of the casualty is uncertain or when visibility is poor, such as at night or in fog. Purpose: • To bring the ship back onto its previous course line, improving the chance of relocating the person who fell overboard. • Ensures the vessel returns to the point of incident efficiently and safely. • Helps maintain visual and navigational reference in low-visibility conditions. Procedure: 1. Apply full rudder toward the side where the person fell overboard. 2. Allow the vessel to deviate 60° from its original course. 3. Shift full rudder to the opposite side. 4. Continue the turn until the vessel is heading about 20° from the reciprocal (opposite) course. 5. Return rudder to midships. 6. Steady the vessel on the reciprocal course and proceed back along the original track to search for and recover the casualty.

MARINO PH - The largest maritime community.
9_20250904_175149_0008.png
10_20250904_175149_0009.png
12_20250904_175150_0011.png
19_20250904_175150_0018.png
20_20250904_175150_0019.png
23_20250904_175150_0022.png
26_20250904_175150_0025.png
32_20250904_175150_0031.png
5_20250904_175149_0004.png
6_20250904_175149_0005.png
8_20250904_175149_0007.png
11_20250904_175149_0010.png
13_20250904_175150_0012.png
14_20250904_175150_0013.png
15_20250904_175150_0014.png
16_20250904_175150_0015.png
17_20250904_175150_0016.png
18_20250904_175150_0017.png
21_20250904_175150_0020.png
22_20250904_175150_0021.png
24_20250904_175150_0023.png
25_20250904_175150_0024.png
27_20250904_175150_0026.png
28_20250904_175150_0027.png
29_20250904_175150_0028.png
30_20250904_175150_0029.png
31_20250904_175150_0030.png
33_20250904_175150_0032.png

Marino PH Logo

MARINO PH

The largest maritime community in the Philippines
© 2025 All Rights Reserved.


CONTACT INFORMATION

+63 (02) 8743 5810
customercare@marinoph.com
Agoncillo Building, 1580 Taft Ave, Ermita, Manila City, 1000 Metro Manila